

The use of Kendrick mass defect plots, a new feature in GC Image™ software for GCXGC/high resolution mass spectrometric data analysis: an application on the identification of halogenated contaminants in electronic waste

Masaaki Ubukata¹, Karl J. Jobst², Eric J. Reiner², Stephen Reichenbach³, QingpingTao⁴, Jiliang Hang⁴, Zhanpin Wu⁵, A. John Dane¹, and Robert B. Cody¹

1. OL USA, Inc., Peabody, MA USA, 2. Ontario Ministry of the Environment, Toronto, Canada, 3. University of Nebraska-Lincoln, Lincoln, NE USA, 4. GC Image LLC, Lincoln, NE USA, 5. Zoex Corporation, Houston, TX USA

Introduction

The combination of GC \times GC with high resolution mass spectrometry (HRMS) is a powerful tool for the analysis of complex mixtures. Hundreds/thousands of components can be separated and detected. However, interpreting the data sets generated by a GC \times GC/high resolution time-of-flight mass spectrometry system can be challenging due to the unprecedented amount of information the data offers.

In 1963, Edward Kendrick realized that by converting the International Union of Pure and Applied Chemistry (IUPAC) mass scale (C = 12.000 Da) to one in which $CH_2 = 14.000 \text{ Da}$ (equation 1), organic ions belonging to a homologous series have identical Kendrick mass defect (equation 2). An example of Kendrick mass and Kendrick mass defect for methyl, ethyl, and propyl naphthalene is listed in Table 1. This approach greatly simplifies the high resolution mass spectrometric data analysis [1].

Kendrick mass = IUPAC mass x (14/14.01565) (1)

Kendrick mass defect = nominal Kendrick mass – exact Kendrick mass (2)

Table 1. Kendrick Mass Defect for Naphthalenes						
Compound	Kendrick Mass	Kendrick Mass Defect				
Methyl naphthalene (C ₁₁ H ₁₀)	141.9195	0.0805				
Ethyl naphthalene (C ₁₂ H ₁₂)	155.9195	0.0805				
Propyl naphthalene (C ₁₃ H ₁₄)	169.9195	0.0805				

In this study, nontraditional Kendrick mass defect by the substitution of a hydrogen with a chlorine atom was used to facilitate the identification of halogenated components in an electronic waste sample ^[2]. The capability of constructing Kendrick mass defect plots has been implemented into GC Image™ software version 2.5.

Method

Sample analysis

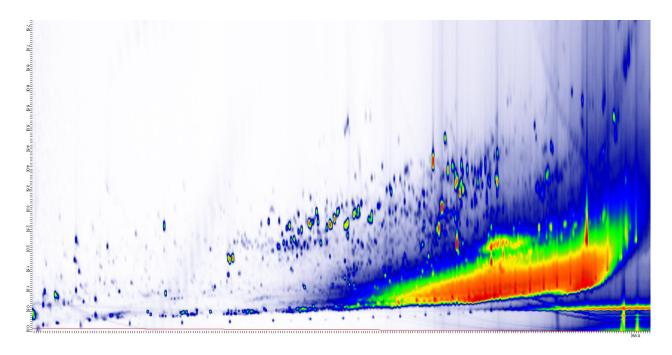
A dust sample collected from an electronic recycling facility was analyzed by using GC x GC (Zoex ZX2 thermal modulator) in combination with a new high-resolution time-of-flight (TOF) mass spectrometer (JEOL *AccuTOF GCv 4G*). The instrument parameters are listed in Table 2.

Table 2. Instrument Parameters						
Conditions	GC x GC/EI					
Sample	Dust collected from an electronic recycling facility					
GC x GC system	Zoex ZX2 thermal modulator					
1st column	Rxi-5SilMS, 30 m x 0.25 mm, 0.25 μm					
2nd column	Rxi-17SilMS, 2 m x 0.15 mm, 0.15 μm					
Modulation loop	Deactivated fused silica, 1.5 m x 0.15 mm					
Modulation period	8 s					
Modulation duration	400 ms					
Inlet mode	Splitless, constant flow					
Oven temp.	50 °C (1 min) -> 5 °C/min -> 320 °C (5 min)					
GC-TOFMS system	AccuTOF GCv 4G (JEOL)					
Ionization mode	EI+, 70 eV					
Ionization current	300 μΑ					
Ion source temp.	250 °C					
MS transfer line temp.	mp. 280 °C					
m/z range	m/z 45-800					
Acquisition time	on time 20 ms (50 Hz)					
Software	GC Image™ Version™ 2.5					

Mass calibration

A single point external mass calibration with one column bleed ion $C_5H_{15}O_3Si_3^+$, m/z 207.0329 was performed after data acquisition.

Kendrick mass defect plot


An average mass spectrum for the entire retention time region was created by summing the mass spectra for all data points in a GC x GC/HRMS data set. Nontraditional Kendrick mass defect (H/Cl mass defect) was calculated. Kendrick mass defect plot was constructed with the nominal mass vs. the corresponding mass defect for each peak in the average mass spectrum.

Results and Discussion

Figure 1 shows the GC x GC total ion chromatogram for an electronic waste sample. An average mass spectrum for the entire retention time region was generated and showed in Figure 2. The exact mass for each ion was converted to H/Cl mass (equation 3) and an H/Cl mass defect plot for the average mass

spectrum was constructed and showed in Figure 3 automatically with GC Image™ software version 2.5.

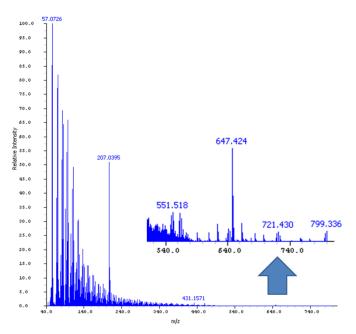


Fig.2 Average mass spectrum for the entire retention time region

H/Cl mass = IUPAC mass x (34/33.96102) (3)

Figure 3 shows that ions in each class of differing halogenated compounds by H/CI substitution align with the horizontal axis since they have the same H/Cl mass defect. Those compounds can be easily, immediately recognized visually in the H/Cl mass defect plot. This greatly simplified halogenated compounds identification in a complex GC x GC chromatogram. By drawing a polygon class of halogenated around each compounds, mass chromatograms can generated automatically. Figure 4 shows the high resolution GC x GC mass chromatograms for the most abundant

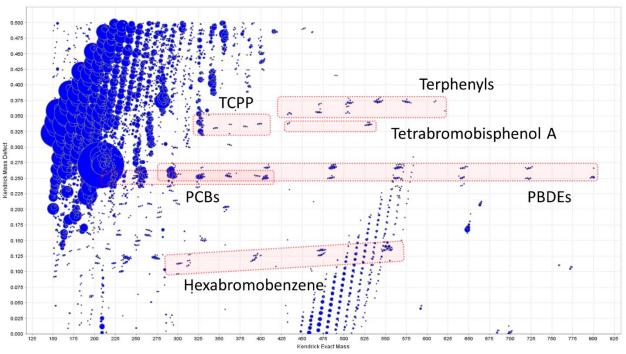


Fig. 3 H/Cl mass defect plot for the average mass spectrum

isotope ions for each class of halogenated compounds. The NIST library search and exact mass measurement were used to confirm the identification. The exact mass measurement results are listed in Table 4.

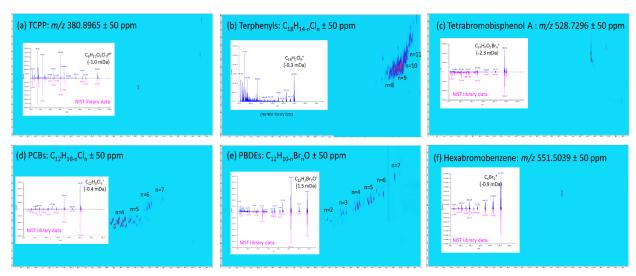


Fig. 4 GC x GC mass chromatograms for the most abundant isotope ions \pm 50 ppm (a) TCPP, (b) polychlorinated terphenyl, (c) tetrabromobisphenol A, (d) PCBs, (e) PBDEs, and (f) hexabromobenzene

Table 4. Exact mass measurement results							
Compound		Elemental	Theoretical	Measured	Difference		
		Composition	Mass	Mass	(mmu)		
TCPP		$C_8H_{13}CI_5O_4P^+$	380.895910	380.896356	-0.446		
Terphenyls	CI 8	$C_{18}H_6Cl_8^+$	505.791323	505.791346	-0.023		
	Cl9	$C_{18}H_5Cl_9^+$	539.752351	539.752675	-0.324		
	Cl10	$C_{18}H_4CI_{10}^+$	573.713378	573.714726	-1.348		
	Cl11	$C_{18}H_3CI_{11}^+$	607.674406	607.675086	-0.68		
Tetrabromobisp A	henol	C ₁₄ H ₉ Br ₄ O ₂ ⁺	528.728964	528.728857	0.107		
PCBs	Cl4	$C_{12}H_6CI_4^+$	291.918862	291.918259	0.603		
	CI5	$C_{12}H_5Cl_5^+$	325.879890	325.879644	0.246		
	Cl6	$C_{12}H_4Cl_6^+$	359.840918	359.840915	0.003		
	CI7	$C_{12}H_3CI_7^+$	393.801945	393.802354	-0.409		
	Cl8	$C_{12}H_2Cl_8^+$	429.760023	429.760063	-0.04		
PBDEs	Br2	$C_{12}H_8Br_2O^+$	327.891595	327.891217	0.378		
	Br3	$C_{12}H_7Br_3O^+$	405.802108	405.801461	0.647		
	Br4	$C_{12}H_6Br_4O^+$	485.710574	485.709147	1.427		
	Br5	$C_{12}H_5Br_5O^+$	563.621087	563.620149	0.938		
	Br6	$C_{12}H_4Br_6O^+$	643.529553	643.529852	-0.299		
	Br7	$C_{12}H_3Br_7O^+$	721.440066	721.439888	0.178		
Hexabromobei	nzene	C ₆ Br ₆ ⁺	551.503338	551.502866	0.472		

Conclusion

The combination of GC x GC with high resolution time-of-flight mass spectrometry is a powerful tool for analysis of complex mixtures. The halogenated compounds can be easily, immediately, and visually distinguished in a very complicated GC x GC chromatogram by using H/Cl mass defect plots – a new feature in GC Image software $^{\text{TM}}$ version 2.5. The identification is further confirmed by NIST library search and the exact mass measurement results.

References

- [1] Edward Kendrick, A mass scale based on CH2 = 14.000 for high resolution mass spectrometry of organic compounds, Anal. Chem (1963) 35:2146 2154
- [2] Karl J. Jobst, Li Shen, Eric J. Reiner, Vince Y. Taguchi, Paul A. Helm, Robert McCrindle, Sean Backus, The use of mass defect plots for the identification of (novel) halogenated contaminants in the environment, Anal Bioanal Chem (2013) 405:3289–3297

INTERNATIONAL

JSB Group Tramstraat 15 5611 CM Eindhoven T +31 (0) 40 251 47 53 F +31 (0) 40 251 47 58

INFO@GO-JSB.COM WWW.GO-JSB.COM

Max-Planck-Strasse 4

D-47475 Kamp-Lintfort

F +49 (0) 28 42 9732 638

SALES AND SERVICE

NETHERLANDS

8239 DA Lelystad T +31 (0) 32 087 00 18 F +31 (0) 32 087 00 19

UK & IRELAND

Cedar Court, Grove Park Business Est. White Waltham, Maidenhead, Berks, SL6 3LW T +44 (0) 16 288 220 48

GERMANY, AUSTRIA, SWITZERLAND

F +44 (0) 70 394 006 78

Grensstraat 7, Box 3 1831 Diegem T +32 (0) 27219211 F +32 (0) 27207622